FEATURES

- HIGH BREAKDOWN VOLTAGE SiGe TECHNOLOGY VCEO = 5 V (Absolute Maximum)
- LOW NOISE FIGURE:
$\mathrm{NF}=0.8 \mathrm{dBm}$ at 2 GHz
$\mathrm{NF}=1.3 \mathrm{dBm}$ at 5.2 GHz
- HIGH MAXIMUM STABLE GAIN: $\mathrm{MSG}=21.5 \mathrm{~dB}$ at 2 GHz
- LOW PROFILE M16 PACKAGE:

6-pin lead-less minimold

DESCRIPTION

NEC's NESG2031M16 is fabricated using NEC's high voltage Silicon Germanium process (UHS2-HV), and is designed for a wide range of applications including low noise amplifiers, medium power amplifiers, and oscillators.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

		PART NUMBER PACKAGE OUTLINE	$\begin{gathered} \text { NESG2031M16 } \\ \text { M16 } \end{gathered}$			
	SYMBOLS	PARAMETERS AND CONDITIONS	UNITS	MIN	TYP	MAX
$\stackrel{\text { ¢ }}{\text { ¢ }}$	NF	Noise Figure at $\mathrm{VCE}=2 \mathrm{~V}, \mathrm{IC}=5 \mathrm{~mA}, \mathrm{f}=5.2 \mathrm{GHz}$, Zs = Zsopt, ZL = ZLOPT	dB		1.3	
	Ga	Associated Gain at $\mathrm{VCE}=2 \mathrm{~V}, \mathrm{Ic}=5 \mathrm{~mA}, \mathrm{f}=5.2 \mathrm{GHz}$, Zs = Zsopt, ZL = ZLOPT	dB		10.0	
	NF	Noise Figure at $\mathrm{VcE}=2 \mathrm{~V}$, $\mathrm{IC}=5 \mathrm{~mA}, \mathrm{f}=2 \mathrm{GHz}$, Zs = Zsopt, ZL = ZLOPT	dB		0.8	1.1
	Ga	Associated Gain at $\mathrm{VcE}=2 \mathrm{~V}$, $\mathrm{IC}=5 \mathrm{~mA}, \mathrm{f}=2 \mathrm{GHz}$, Zs = Zsopt, ZL = ZLOPT	dB	15.0	17.0	
	MSG	Maximum Stable Gain ${ }^{1}$ at VcE $=3 \mathrm{~V}$, Ic $=20 \mathrm{~mA}, \mathrm{f}=2 \mathrm{GHz}$	dB	19.0	21.5	
	$\|S 21 E\|^{2}$	Insertion Power Gain at VCE $=3 \mathrm{~V}$, IC $=20 \mathrm{~mA}, \mathrm{f}=2 \mathrm{GHz}$	dB	16.0	18.0	
	P1dB	Output Power at 1dB Compression Point at $\mathrm{VCE}=3 \mathrm{~V}, \mathrm{IcQ}=20 \mathrm{~mA}, \mathrm{f}=2 \mathrm{GHz}$	dBm		13	
	OIP3	Output 3rd Order Intercept Point at VcE $=3 \mathrm{~V}$, ICQ $=20 \mathrm{~mA}, \mathrm{f}=2 \mathrm{GHz}$	dBm		23	
	f f	Gain Bandwidth Product at $\mathrm{VCE}=3 \mathrm{~V}$, $\mathrm{Ic}=20 \mathrm{~mA}, \mathrm{f}=2 \mathrm{GHz}$	GHz	20	25	
	Cre	Reverse Transfer Capacitance ${ }^{2}$ at $\mathrm{VCB}=2 \mathrm{~V}$, IE $=0 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}$	pF		0.15	0.25
O	Icbo	Collector Cutoff Current at $\mathrm{VCB}=5 \mathrm{~V}$, IE $=0$	nA			100
	Iebo	Emitter Cutoff Current at $\mathrm{VEB}=1 \mathrm{~V}$, IC $=0$	nA			100
	hfe	DC Current Gain ${ }^{3}$ at $\mathrm{VCE}=2 \mathrm{~V}$, IC $=5 \mathrm{~mA}$		130	190	260

Notes:

1. $M S G=\left|\frac{S_{21}}{S_{12}}\right|$
2. Collector to base capacitance when the emitter pin is grounded.
3. Pulsed measurement, pulse width $\leq 350 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}\left(T_{A}=25^{\circ} \mathrm{C}\right)$

SYMBOLS	PARAMETERS	UNITS	RATINGS
Vcbo	Collector to Base Voltage	V	13.0
Vceo	Collector to Emitter Voltage	V	5.0
Vebo	Emitter to Base Voltage	V	1.5
Ic	Collector Current	mA	35
PT^{2}	Total Power Dissipation	mW	175
TJ	Junction Temperature	${ }^{\circ} \mathrm{C}$	150
TstG	Storage Temperature	${ }^{\circ} \mathrm{C}$	-65 to +150

Note:

1. Operation in excess of any one of these parameters may result in permanent damage.
2. Mounted on $1.08 \mathrm{~cm}^{2} \times 1.0 \mathrm{~mm}(\mathrm{t})$ glass epoxy PCB.

ORDERING INFORMATION

PART NUMBER	QUANTITY	SUPPLYING FORM
NESG2031M16-T3-A	10 K pcs reel	Pin 1 (Collector), Pin 6 (Emitter) face the perfora- tion side of the tape

OUTLINE DIMENSIONS (Units in mm)
PACKAGE OUTLINE M16 6-PIN LEAD-LESS MINIMOLD

Life Support Applications
These NEC products are not intended for use in life support devices, appliances, or systems where the malfunction of these products can reasonably be expected to result in personal injury. The customers of CEL using or selling these products for use in such applications do so at their own risk and agree to fully indemnify CEL for all damages resulting from such improper use or sale.

Subject: Compliance with EU Directives

CEL certifies, to its knowledge, that semiconductor and laser products detailed below are compliant with the requirements of European Union (EU) Directive 2002/95/EC Restriction on Use of Hazardous Substances in electrical and electronic equipment (RoHS) and the requirements of EU Directive 2003/11/EC Restriction on Penta and Octa BDE.

CEL Pb-free products have the same base part number with a suffix added. The suffix -A indicates that the device is Pb -free. The -AZ suffix is used to designate devices containing Pb which are exempted from the requirement of RoHS directive (*). In all cases the devices have Pb-free terminals. All devices with these suffixes meet the requirements of the RoHS directive.

This status is based on CEL's understanding of the EU Directives and knowledge of the materials that go into its products as of the date of disclosure of this information.

Restricted Substance per RoHS	Concentration Limit per RoHS (values are not yet fixed)	Concentration contained in CEL devices	
Lead (Pb)	<1000 PPM	-A	-AZ
Mercury	$<1000 \mathrm{PPM}$	Not Detected	(*)
Cadmium	$<100 \mathrm{PPM}$	Not Detected	
Hexavalent Chromium	$<1000 \mathrm{PPM}$	Not Detected	
PBB	$<1000 \mathrm{PPM}$	Not Detected	
PBDE	<1000 PPM	Not Detected	

If you should have any additional questions regarding our devices and compliance to environmental standards, please do not hesitate to contact your local representative.

[^0]
[^0]: Important Information and Disclaimer: Information provided by CEL on its website or in other communications concerting the substance content of its products represents knowledge and belief as of the date that it is provided. CEL bases its knowledge and belief on information provided by third parties and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. CEL has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. CEL and CEL suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
 In no event shall CEL's liability arising out of such information exceed the total purchase price of the CEL part(s) at issue sold by CEL to customer on an annual basis.
 See CEL Terms and Conditions for additional clarification of warranties and liability.

